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AXTALLY SYMMETRIC PLASTIC DEFORMATIONS IN SOILS
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A theoretical investigation is given of quasi-static axially symmetric plastic deformations in soils.
The mechanical behaviour of a natural soil is approximated by that of an ideal soil which obeys
Coulomb’s yield criterion and associated flow rule, with restriction to rigid, perfectly plastic
deformations.

There are considerable variations in the structure of the associated stress and velocity field
equations for the various plastic régimes, but it is noteworthy that real families of characteristics
occur in all non-trivial cases. Attention is focused on those plastic régimes agreeing with the
heuristic hypothesis of Haar & von Karman as being seemingly of application to certain classes
of problems, in particular to those of indentation. The stress and velocity fields are then hyperbolic
with identical families of characteristics, and the stress field is statically determinate under appro-
priate boundary conditions.

In applications of the theoretical analysis, attention is confined to situations involving only the
Haar & von Kéarman plastic régimes. First, possible velocity fields are obtained for the incipient
plastic flow of a right circular cylindrical sample of soil subjected to uni-axial compressive stress
parallel to its axis. Secondly, a complete solution is obtained for the incipient plastic flow in
a semi-infinite region of soil, bounded by a plane surface, due to load applied through a flat-
ended, smooth, rigid, circular cylinder; numerical results obtained for this problem include the
variation of yield-point load with angle of internal friction of the ideal soil. These applications
relate to problems of the mechanical testing of soil samples and of load-bearing capacity in
foundation engineering.
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2 A. D. COX, G. EASON AND H. G. HOPKINS

NorAaTION

A short list of symbols is given below. All other notation is defined when first introduced
in the paper. It should be noted that a few symbols have different meanings in different
contexts, but no confusion should arise. Also, there are differences in notation here from

that of Shield (19556).

¢ cohesion stress
angle of internal friction
Po initial density
r 0,z cylindrical polar co-ordinates
Gry Ogy Opy Ty stress components
U, w radial and axial velocity components
€ps €05 €55 V) strain-rate components
0, € (1 =1,2,3) principal stresses and strain-rates
n angle specifying orientation of principal stresses and strain-rates
A u plastic flow-rate parameters
ba atmospheric pressure

c* =c+p,tang relative cohesion stress

1. INTRODUCTION

The present investigation in theoretical soil plasticity is concerned with ideal soils whose
postulated mechanical behaviour is an approximation to that of a wide class of natural
soils. The term natural soil as used in this paper is intended to cover the range of the relatively
soft uncemented geological materials of the earth’s crust, which, broadly speaking, are
comparatively loose aggregates of mineral particles, the voids being filled with water or air
or both. The distributions of particle size are supposed to be within the clay, silt and sand
fractions. The limits of the range of soils envisaged are in a sense represented by frictionless
fully saturated clays and cohesionless dry sands, and a partly saturated clay or mixed soil
may be regarded as an intermediate case. Specifically excluded from the present discussion
are rock-like brittle geological materials of varying degrees of hardness, such as, for example,
limestone, for which the present type of plasticity theory is not applicable. The mechanical
behaviour of natural soils is both complex and variable and is still imperfectly understood.
In this connexion, particularly useful references are the standard texts by Terzaghi (1943)
and Terzaghi & Peck (1948) and the review article by Skempton & Bishop (19354). It is
not proposed to discuss in detail the physical limitations of the approximation to be adopted
here, but some preliminary remarks of a general nature based upon conclusions reached by
previous writers on theoretical soil plasticity will now be given.

It seems clear that present studies of theoretical soil plasticity must relate mainly to the
phenomenological behaviour of natural soils. In addition, owing to the variable and
inhomogeneous physical structure of natural soils, it is necessary to consider ranges of
values of ideal soil constants that represent certain averaged rheological properties of
natural soils. In certain circumstances (e.g. in some problems of foundation engineering),
there appears to be reasonable justification for the adoption of a limit analysis approach
based upon Coulomb’s (1773) law of failure in soils. This law expresses the mechanical
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PLASTIC DEFORMATIONS IN SOILS 3.

strength of a general soil in terms of certain fairly well defined physical properties, namely,
cohesion (due to the bonding acivion of water and air present between the constituent
mineral particles) and friction (due-~ forces set up at inter-particle contacts). As defined
here, the natural soils include clays, silts and sands, a fundamental division existing between
those soils that are cohesive substances such as clays and cohesionless particle aggregates
such as dry sands. It may be noted that in a fully saturated clay, the inter-granular contacts
are effectively lubricated by the pore water, so that the frictional strength is then quite
negligible. Of course, in practical applications of theoretical studies based upon a limit
analysis approach, considerable care is required in attempting to correlate values, or ranges
of values, of the ideal soil constants with the measured values of natural soil constants.
Generally in theoretical soil plasticity, the difficulties of procedure are not only of a purely
mathematical nature, but are also associated with incompleteness in the present knowledge
of the basic physics and also with the paucity of really reliable experimental data. How-
ever, in spite of these difficulties, it is hoped that further insight into the basic mechanics
of soil plasticity will be achieved through continuing theoretical studies concerned with
ideal soils.

The object of the present investigation is to provide a theoretical analysis, valid under
certain mathematical and physical assumptions, that has application to a fairly wide class
of practical problems of soil mechanics. The class of problems envisaged concerns the general
situation of quasi-static axially symmetric plastic flow. Included are problems of load-
bearing capacity in foundation engineering and of the mechanical testing of soil samples
as in the tri-axial test. Other assumptions made in the present analysis, which relate to the
assumed simplified mechanical behaviour of natural soils, are discussed later.

Theyield condition on which Coulomb (1773) based his theory of earth pressure includes,
as a special case, the yield condition proposed by Tresca (1868) in connexion with the plastic
deformation of ductile metals. Interestingly, for reasons of mathematical simplicity, many
important contributions currently being made to the mathematical theory of metal
plasticity are based directly upon Tresca’s yield condition rather than upon von Mises’s.
Prager (1953) has remarked upon the fact that the early development of the mathematical
theory of metal plasticity was strongly influenced, and at times preceded, by developments
in the much older theory of earth pressure. Instances of this situation, including some of
relatively recent date, are cited by Prager. However, generally, in the more modern
developments of the mathematical theory of plasticity, this situation has been reversed.
Moreover, inasmuch as the rheological properties of natural soils are more complex and
variable than those of metals, it seems quite clear that the development of metal plasticity
theory will continue, at least for some time, to lead that of soil plasticity theory. The basic
reason for the new situation is that much progress has been made in recent years in the
correct formulation of the boundary-value problems of plastic deformation, especially in
connexion with metals. Until quite recently, an important defect in the theory of earth
pressure lay in its development without reference to stress-strain relations, the theory being
based upon the concept of states of limiting equilibrium satisfying Coulomb’s law of soil
failure in conjunction with a conjectured extremum principle. This procedure altogether
neglects the important fact that stress-strain relations are an essential constituent of a com-
plete theory of any branch of the continuum mechanics of deformable solids. Thus, for

I-2
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4 A. D. COX, G. EASON AND H. G. HOPKINS

example, even in a stress boundary-value problem of statical determinacy, although the
stress field can be found, at least in principle, without explicit knowledge of an acceptable
velocity field, compatibility between these two fields is the essential final justification that
the stress field so obtained is in fact the correct one. On the other hand, in a boundary-
value problem of statical indeterminacy, there is no such apparent independence between
the two fields even in the case of a stress boundary-value problem. These matters are now
appreciated in general theory, and are therefore appreciated in relation not only to problems
of metal plasticity but also to those of soil plasticity.

It is not intended to give here a complete summary of the origins and development of
theoretical soil plasticity. Instead, attention is confined mainly to a brief summary of recent
progress from about 1950 onwards. The references given will provide the interested reader
with summaries and references to the earlier work. As remarked upon by Hill (1950), the
plastic yielding of certain non-metallic materials, e.g. clay and ice, is markedly dependent
upon the mean value of the principal stresses. Accordingly, a more elaborate plasticity
theory is required for such materials than is required for ductile metals for which there is
not this dependence, at least under normal levels of stress intensity. Now at present, in-
vestigations based upon the concept of perfect plasticity (i.e. no strain-hardening) form the
central and most extensively developed part of the mathematical theory of plasticity.
Here, the fundamental importance of von Mises’s concept of the plastic potential has been
shown in terms of the principle of maximum plastic work, due to Hill (1950), and the
theorems of limit analysis, due to Drucker, Greenberg & Prager (see Prager & Hodge 1951).
Moreover, it is then possible to prove certain uniqueness theorems. At first, application of
the mathematical techniques involved was restricted mainly to the theoretical treatment of
problems concerning plastic deformations in ductile metals. However, the corresponding
extension to problems involving plastic deformations in soils is more recent, and, in fact,
this extension marks the beginning of the development of a consistent mathematical theory
of soil plasticity. This proposal was first made by Drucker & Prager (1952), and it has been
developed and applied to the discussion of problems of interest in a series of papers by
Drucker (1953) and Shield (1953, 19544,56, 19554), the general trend being from two-
dimensional situations to three-dimensional ones. Prager (1953) has provided some account
of the progress made in this field. Finally, it is appropriate to mention here the work of
Drucker, Gibson & Henkel (1955) on strain-hardening theories of soil plasticity and also
that of Sobotka (1959, 1960) on non-homogeneous soils.

The present paper is concerned with an extension of the application of the techniques
of metal plasticity theory to allow the treatment of problems involving plastic deformations
in soils. More precisely, a theoretical study is made of quasi-static stress and velocity fields
occurring in plastically deformed ideal soils under axially symmetric conditions. The mech-
anical behaviour attributed to the medium is rigid, perfectly plastic, subject to Coulomb’s
yield condition and associated flow rule. In suitable circumstances, the behaviour of this
ideal soil provides a useful approximation to that of a natural soil, say a typical clay,
exhibiting both cohesion and internal friction. It should be particularly noted that the
present analysis takes no account of effects due to elastic strain, strain-hardening or inertia.
Some account of the effect of soil weight, important under certain circumstances, is included.

The specification of the idealized type of soil mechanical behaviour considered here
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PLASTIC DEFORMATIONS IN SOILS 5

involves just two parameters, namely, one representing cohesion stress, ¢ (= 0), and the
other representing angle of internal friction, ¢ (0 < ¢ < 4m). Consider a small plane element
of area dA, of arbitrary orientation, and drawn through a given point within a mass of
isotropic cohesive soil. Let ¢d4 and 764 be the normal and shear forces, respectively,
exerted across this element. Then, according to Coulomb’s law of plastic flow in soils, the
shear stress, 7 (> 0), must not exceed an amount that depends linearly upon the cohesion
stress and the normal stress, ¢ (here taken to be positive in tension), i.e.

7T< c—otang. (1-1)

On the basis of (1-1), Shield (1955a) has correctly formulated the yield condition and
associated flow rule appropriate to the general treatment of three-dimensional problems
of soil plasticity. In application of the analysis, Shield considered only the approximate
solution of the problem of the bearing capacity for a rectangular punch or footing on the
plane surface of a semi-infinite mass of soil. Tt may be noted that this treatment of three-
dimensional problems followed upon related work by Drucker (1953), and that
J- F. W. Bishop and W. Prager in unpublished work have also independently obtained the
essentials of Shield’s analysis. In previous work, attention had been confined mainly to the
two-dimensional plane strain problems of soil plasticity.

Now Tresca’s yield criterion, which applies to ductile metals, corresponds to the par-
ticular case of Coulomb’s yield criterion when there is no internal friction. In other words,
Tresca’s law of plastic flow in metals, which is represented by

7 <k, (1-2)

where £ (> 0) is the shear yield stress, is alternatively represented by (1-1) with ¢ = £ and
¢ = 0. The condition (1-2) is simply a specialization of (1-1). Fundamentally, Coulomb’s
yield criterion contrasts with Tresca’s in dependence upon the mean value of the principal
stresses. Of course, some similarities and, necessarily, general consistency must be expected
to occur in theory and applications in analogous situations when Tresca’s or Coulomb’s
yield criterion is adopted. To some extent, and whenever analogous physical situations of
interest occur, progress in the solution of soil plasticity problems may be expected to be
consequent upon progress in that of metal plasticity problems. In fact, the present paper
reflects this situation. Shield (19554) has developed, and applied to some problems of in-
terest, the general theory of axially symmetric plastic flow of rigid, perfectly plastic material
obeying Tresca’s yield condition and associated flow rule. Detailed analysis revealed
considerable variations in the structure of the field equations for the various plastic régimes.
On this basis, it was conjectured that those plastic régimes agreeing with the hypothesis
of Haar & von Karmdn were likely to be of the greatest significance in the solution of
problems of interest. This heuristic principle of Haar & von K4rman states, under the
present axially symmetric conditions, that the circumferential principal stress is equal to
one of the other two principal stresses acting in an axial plane. In this case, the stress
and velocity equations are hyperbolic with the same families of characteristics, and, in
addition, the stresses are statically determinate. Shield (19554) solved certain problems
for which the Haar & von Karman hypothesis is valid. Recently, Eason & Shield (1960)
have extended this earlier work.
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6 A. D. COX, G. EASON AND H. G. HOPKINS

Essentially, the present analysis based upon Coulomb’s yield criterion for soils may be
regarded as a development of Shield’s (19554) previous analysis based upon Tresca’s
yield condition for ductile metals. Although the yield criterion is now dependent upon the
mean value of the principal stresses, and the analysis is accordingly more complicated, none
of the more basic features of the analysis are thereby affected. An important correction to
Shield’s analysis should, however, be noted, viz. the velocity fields of two of the plastic
régimes are now proved to be hyperbolic, not elliptic (see §4-2).

Berezancev (1955) has given a discussion of the problems of normal penetration of
cohesive soils by a rigid smooth sphere and by a rigid smooth right circular cone. The
physical assumptions concerning the mechanical behaviour of the material are the same as
those made here. The analysis, however, is open to some adverse criticism. Thus, there is
the assumption a priori that the stress fields are generated by the Haar & von Karman
plastic régimes. Also, attention is confined to stress fields in plastically deforming regions,
and there is no discussion either of the stress fields in rigid regions or of compatible velocity
fields. Further, the displacements at the stress-free boundary are entirely neglected. There-
fore, the approach made by Berezancev to these soil plasticity problems is, at best, only
approximate, and the accuracy of the values obtained for applied loads needed to produce
penetration is not known. Shield (195554) has made somewhat similar criticism of work
by Ishlinskii (1944) on the problem of the indentation of a semi-infinite body by a circular
flat-ended rigid punch, attention being given to material that was rigid, perfectly plastic
and that obeyed Tresca’s yield criterion. Shield’s exact analysis of this problem was required
to justify Ishlinskii’s method of determination of the applied load needed to produce
penetration. However, Shield found Ishlinskii’s value of the limit load to be only slightly
in error due to the particular numerical procedure adopted. Generally, in situations when
penetration occurs, there may very well be quite large displacements at the stress-free
boundary, and their neglect may result in serious errors in values of penetration loads.

A most striking feature of the present analysis concerns the almost invariable occurrence
of (real) families of characteristics of the stress and velocity equations. This situation stems
directly from the adoption of a piece-wise linear yield condition. In Hodge’s (1956)
terminology, the present paper develops a piece-wise linear isotropic theory of soil plasticity.
It is interesting to contrast the present situation with that existing when Tresca’s yield
criterion, obtaining for ¢ = 0, is replaced by von Mises’s yield criterion. Investigations,
by Hill (1950), Parsons (1956) and also other writers, of the equations now governing the
stress and velocity fields have shown that there are no real characteristics, except possibly
curves along which the radial velocity vanishes. Thus, a marked degree of mathematical
simplicity is achieved here through the adoption of Coulomb’s yield criterion.

The main content of this paper is set out in three separate parts arranged as follows.
Part I concerns the basic equations of quasi-static axially symmetric plastic deformations
in the present type of ideal soil. The general field equations are formulated in §2 and a
general discussion of strong discontinuities in the field quantities is given in §3. Part II
concerns the detailed analysis of the basic equations. This analysis is given in § 4, where for
convenience the individual plastic régimes are classed as members of four distinct groups.
Part ITI concerns applications of the general theory developed in parts I and II. In §5,
as a preliminary and simple illustrative example, possible velocity fields are obtained for
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PLASTIC DEFORMATIONS IN SOILS 7

the incipient plastic flow of a right circular cylindrical sample of ideal soil subjected to
uni-axial compressive stress parallel to its axis. Next, in § 6, a complete solution is given
of the problem of the incipient plastic flow in a semi-infinite region of ideal soil, bounded by
a plane surface, due to load applied through a flat-ended, smooth, rigid, circular cylinder.
In particular, numerical results are presented for the variation of the yield-point load with
angle of internal friction of the ideal soil. Finally, in §7, concluding remarks on the
investigation are made.

PART 1. BASIC EQUATIONS

2. GENERAL FIELD EQUATIONS

Let O be the origin of a right-handed system of cylindrical polar co-ordinates 7, 0, z
(see figure 1). These co-ordinates are Eulerian. A superior dot associated with a quantity
denotes convective differentiation, i.e. differentiation following the motion of a particle.
Thus, as is usual, (...)' = (d/dt+q.V) (...), where q denotes particle velocity. In the usual

Frcure 1. Cylindrical polar co-ordinate system Ficure 2. Directions of principal stress.
and stress components.

notation, let (o,, 0, 0,, 7y,, 7,,, 7,5) be the stress components, (u,v,w) be the velocity com-
ponents, and (¢,, €y, €., 9.5 ¥»2> 79) D€ the strain-rate (tensor) components, referred to this
co-ordinate system. The z axis is taken to be the axis of symmetry. Further, if the effect
of soil weight is important in any problem considered, then the positive z direction is taken
to coincide with the direction in which gravity acts. Axial symmetry requires that the
shear stresses 7,, and 7,,, the circumferential velocity v and the shear strain-rates 7,, and 7,
all vanish identically, and that all remaining stress, velocity and strain-rate components
are functions at most of 7, z, ¢, where £ is a suitable time-like co-ordinate. As the mechanical
behaviour of the material is assumed to be independent of all reference to physical time, 7,
it is necessary to consider 7" explicitly only in dynamical problems when inertial effects
are important. In quasi-static problems, to which attention is confined here, a time-scale
is merely necessary to order the sequence of events. Accordingly, in the present situation,
any suitable monotonic increasing quantity £, correlated with progressive deformation
occurring in any particular problem, provides a natural (or built-in) time-scale. Thus,
velocity and strain-rate components are conveniently measured with respect to such a
time-like co-ordinate . Of course, the analysis provides only the ratios, and not the absolute
values, of such components. This situation simply reflects the fact that no inertial or viscous
effects are considered. '
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8 A. D. COX, G. EASON AND H. G. HOPKINS
If quasi-static conditions apply, then the stress components satisfy the equations of

equilibrium do, 01, o,—0, . or,, 0o,
or ' 0z r 7 or (?z

”+pg~ 0. (21)

Now if L and f denote a typical length and acceleration involved in a particular problem,
then the condition that inertial effects are sufficiently small to be neglected in the equations

as above is that P

(efL]e, f]g) <1, (2-2)
where p and ¢ (> 0) are the density and cohesion stress of the medium. The components of
the strain-rate tensor are

ou . uw ., Jdw (0u 8w) (2:3)

“To T ST Tl

Inasmuch as there is axial symmetry, any axial plane # = const. may be taken as a
reference plane (r,z), (r = 0), and all mathematical quantities are to be determined as
functions of r, z, ¢. It should be noted that the condition of axial symmetry imposes certain
rather special conditions on the stress, velocity and strain-rate components, and on certain
of their derivatives, along the axis. Discussion of these conditions has also been given
previously by Hill (1950), Parsons (1956) and other writers. In deriving these conditions,
certain assumptions are made. First, plastic flow without fracture is assumed to occur.
Secondly, sufficient conditions for the existence of derivatives and other limits are assumed
to be satisfied. Now the condition of axial symmetry itself directly requires that

7= o T =0 on 7 =0. (2-4)
€, =6 V.= 0,

The condition that particles near the axis in a plane z = const. do not separate is
u=0 on 7r=0. (2-5)

It should be noted, however, that this condition is not always taken to be strictly satisfied
in applications to problems. The equilibrium equations (2-1) now show that

. (0o, o0,— . (do,  2r1,, B )
Jim (G 2522) = 0, i (G5 e 0 (26)
and the definitions (2-3) show that
Jw
kﬂ(w)zo' (27)

Additional relations may of course be obtained through processes of differentiation.

In proceeding, it is necessary now to specify in more detail the mechanical behaviour of
the material. All elastic strain is neglected so that effectively the material is completely
rigid for stress states below yield. Further, strain-hardening is neglected so there is now no
direct restriction on the magnitude of the plastic strain-rates occurring for yield stress
states. The plastic strain-rate is taken to be in accord with Coulomb’s yield condition and
plastic potential, i.e. the von Mises’s hypothesis of an associated yield condition and flow
rule is adopted. The fundamental relations between stress and strain-rate are most
simply and conveniently formulated with reference to the principal stresses and strain-rates,
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PLASTIC DEFORMATIONS IN SOILS 9

o; and ¢ (1 = 1,2, 3), respectively. In the present case of isotropic material, the principal
axes of stress and strain-rate coincide. The circumferential direction is automatically a
principal direction because of axial symmetry. The conventions ¢y = ¢, and é; = ¢, are
accordingly adopted. Provided that either ¢, =+ 7, or ¢; = é, then the principal directions
falling within the reference plane (7, z) are unique. However, these two directions are not
yet distinguished between, nor is their orientation specified to within an integral multiple
of m. It is required to introduce a definite system of right-handed co-ordinate axes
associated with these principal directions. The conventions ¢, > ¢, and (equivalently,
because of isotropy) ¢; = ¢, are adopted, and then the positive, first and second, principal
directions are defined to make an angle of 7 (0 < # < m) with the positive r and z directions,
respectively (see figure 2). The basic equations of transformation of stress components

are then 7= 40,0 + o, — o) i
0y = 4o, +0) —{(o,— )+ M, (2:8)
03 = 0p;

and, conversely, 0, = $(0,+0,) +%(0;—0,) cos 27,
0, = 5(0y+0y) — (0, —0,) cos 2, (29)
T, = (0, —0,) sin 27,

where cos 27/4 (0, —a,) =sin2y/1,, = 1/{}(0,—0,)2+12,}, (0<p<m). (2-10)

The analogous equations involving the strain-rate components are

é = 3(6,+6,) +{(6—6,) 2+ 721,

6 = $(6,+6) —{1(6,— &) TP, (2-11)

€3 = €ps
and, conversely, é, = +(é,+¢6,) +%(é,—¢,) cos 27,

€, = $(é,+6,) —5(é,—6,) cos 27, (2-12)

Trz = £(é,— ;) sin 20,
where  cos2q/b(4,—&) —sin2nfh, — VGG~ &)+, (0<p<m.  (213)
It follows from (2-10) and (2-13) that
(0,—0)[(,—€.) = 1,0}z (2:14)

The relation (2-14) is a necessary, but not sufficient, condition for isotropy. However, from
(2-9) and (2:13), it follows that both ratios (2-14) are non-negative and equal to
(07—0,)/(é;—¢,), and this is the necessary and sufficient condition for isotropy.

Now Shield (19554) has given the correct formulation of Coulomb’s yield condition and
associated flow rule under quite general conditions of three-dimensional stress. If the
(algebraic) maximum, intermediate and minimum principal stresses are oy, oy; and oy,
then the yield condition is

01— 0y = 2ccos g — (op+opy) sing,  (0y = oyt = o), (2-15)

where ¢ and ¢ are physical parameters of the material, denoting cohesion stress and
angle of internal friction, respectively. Note that under isotropic stress conditions,

2 Vor. 254. A.
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10 A. D. COX, G. EASON AND H. G. HOPKINS

0y = 0 = 0y = ccotg. The case ¢ = 0 and ¢ > 0 corresponds to a frictionless material,
representative say of a fully saturated clay, and the case ¢ = 0 and ¢ > 0 corresponds to
a cohesionless material, representative say of a dry sand. The intermediate case of a
material exhibiting both cohesion and internal friction is representative of a clay for which
¢ > 0 and (typically) 0° < ¢ < 40°. For definiteness, the restrictions

>0, 0<¢<in (2-16)

are generally adopted here. The case ¢ = 0 and ¢ > 0 needs special consideration which is
not given in detail here.

s
= 7 E /
AL~ ,’/L %
By -
£ a,
K0 :

Ficure 3. Yield surface in principal stress space.

The yield condition (2-15) is most simply represented by a surface drawn in a hypo-
thetical three-dimensional space in which a stress state o; (i = 1,2, 3) is represented by
a point whose co-ordinates with respect to a rectangular Cartesian frame of reference
are 0; (1=1,2,3). In figure 3, the yield surface is shown as an irregular hexagonal
(double) right pyramid with vertex V at the point o;=ccotg >0 (i =1,2,3) and
with axis as the line through the co-ordinate origin O and V. The cross-section of this
pyramid by a general plane ¢ = const. is the irregular hexagon ABCDEF. The six edges of
the pyramid pass through ¥ and the points 4,(ay, 0,0), B,(ag, @, 0), Cy(0, @y, 0), Do( — by, 0,0),
Ey(—bg, —by, 0) and Fy(0, —b,, 0), where

ay/2¢ = tan (37 —4¢) = cos /(1 +sin @),
by/2¢ = tan (in+4¢) = cos¢/(1 —sing), (2-17)
and hence (ag/2¢) (bo/2¢) =1, 1/ay—1/by= (1/c) tan¢.

In the present paper, no explicit attention will be given to that part of the yield surface
either at or beyond the vertex V, i.e. the restriction

o, <ccotgp (i1=1,2,3) (2-18)

is adopted. This restriction seems likely to be well satisfied in certain classes of problems,
e.g. penetration problems, which are characterized by stress conditions that are generally
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PLASTIC DEFORMATIONS IN SOILS 11

of a compressive, rather than a tensile, nature. The restriction may in fact involve little
limitation in practical applications of the analysis, but in any event, it is easily relaxed
should the need arise. Further, it is quite straightforward to give attention to other
restrictions on the yield surface corresponding to tension cut-offs (see Shield 19554). The
complete yield surface is shown in figure 3, stress states below yield corresponding to points
inside the pyramid VABCDEF and those at yield corresponding to points on this pyramid.
In other words, points on the varying hexagon ABCDEF represent all possible plastic stress
states given by (2-15). Now according to von Mises’s theory of the plastic potential, the
principal plastic strain-rate vector &(¢;), associated with a principal stress vector o(0;), is
directed along the normal drawn outwards to the yield surface at the point g; (i = 1, 2, 3).
This direction is unique except at the singular points along the edges V(4,B,C, D, E, F).
In such a case, following the Koiter—Prager generalization of von Mises’s rule, the direction
€ is restricted merely to lie between, and in the plane defined by, the unique normals drawn
outwards to the two faces of the pyramid intersecting in the particular edge considered.
Thus, if f(o,, 0y, 03) = 0 generally denotes the yield condition, with f < 0 corresponding
to stress states below yield, then formally

i A=0, (i=1,23), (2:19)
0 if either (i) f<0 or (ii) f=0 and /<0,

I A% if f=f=o,

A being a scalar non-negative plastic flow-rate parameter of position and time, and the
differential coefficients df/do; being correctly interpreted at singular points. In view of the
previous (notational) restriction that ¢; > 0,, it follows that only one-half, namely VEFAB,
of the complete yield surface is to be considered, there being symmetry of course about
the plane VBE. For simplicity, reference will be made to the various plastic régimes in-
volved in four distinct natural groups, individual plastic régimes being denoted simply
by reference to vertices or sides of EFAB, namely: I, Band E; IT, AB and EF; 111, A and F;
and IV, AF. Thus, the groups I and ITI comprise the singular edge plastic régimes, whereas
the groups II and IV comprise the regular face plastic régimes. The yield functions fp,
corresponding to the face plastic régimes PQ = (DE, EF,FA, AB, BC) are

Jor = —01/bg+05/a—1,)
Jep = —0a/by+03/a,—1,
Jra=01/8g—05/bp—1,
Jaz = 01/ag—0s/by—1,

Jee= 0afag—0s/by—1.)

~

(2-20)

The flow rules (2:21) (table 1) for the various plastic régimes are now simply obtained from
(2:19) and (2-20). In the case of the singular plastic régimes, it is convenient to introduce a
scalar parameter # (0 < # < 1 at most) of position and time whose increase corresponds to a
transition between the relevant regular plastic régimes reckoned in an anti-clockwise sense
round the hexagon ABCDEF. Here, the edge and face plastic régimes are defined as closed
régimes, i.e. to have coincident termini.
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12 A. D. COX, G. EASON AND H. G. HOPKINS
TABLE 1. YIELD CONDITIONS AND FLOW RULES FOR INDIVIDUAL PLASTIC REGIMES (2-21)
plastic yield condition. . . .
group régime stress state. u €,/A €[4 €5/A
I B 0= 0y=2ay+0y/N; (L—p)[aq #lag —1/b,
o,=0,>03;0< <}
E 0y =0y=—by+ Noy; = (L=p)[by — wlby 1/a,
O3>0 =0y 4<p<l
11 AB o= ay+ 04/N; 1/a, 0 —1/b,
0> 0y2 0y
EF 0y=—by+ Nog; 0 —1/b, 1/a,
0320 2 0,
I 4 0y =03=N(0,—a); 1/a, —(1—p)[by — /by
o >0,=050< <1
F 0= 0y= (034 by)/N; lag —1/b, (L—p)]aq
0,=03>0,;0< g1
v FA 0/ag— 0plby=1; 1/a, -1/, 0

02032 0,y
N=N(¢) = tan? (37 +4¢) > 1
It should be noted that the result
€, -Fby+é5 = (1)ag—1/by) L = (AJe) tang = 0 (2-22)
holds quite generally at points on the yield surface, and hence plastic flow is accompanied

by dilatation, and therefore by decrease in density of the medium, except in the special
case ¢ = 0. Now the equation of conservation of mass is

ptp(éi+é+é5) =0, (2-23)

and hence from (2-22), b= —p(Aje) tang < 0. (2-24)
The relation (2-24) may be formally integrated to give

p = poexp {—(A/c) tan $} (2-25)

for a particular particle. This result shows quite clearly that any amount of plastic strain
A (> 0) always corresponds to a decrease in density unless ¢ = 0. In any problem of con-
tinuing plastic flow in which the weight of the soil is important, the analysis is complicated
by density changes that occur as the deformation proceeds. However, in any problem of
incipient plastic flow, p = p, in (2-1) and g is simply given by (2-24). It should also be noted
that at large plastic strain, (2-25) implies considerable reductions in p, assuming that ¢ > 0.
Now this situation is unlikely from a physical standpoint for, although natural soils do
exhibit some degree of dilatancy, this is strictly limited, and relatively small density changes
due to internal friction only occur. It must therefore be concluded that the assumption of
Coulomb’s yield condition and flow rule is not a valid one in the analysis of a problem
involving large plastic strain. In the present paper, application is envisaged either to prob-
lems of incipient plastic flow in which effects due to soil weight are important, or to prob-
lems of continuing plastic flow in which such effects are neglected. The condition for
effects due to soil weight to be sufficiently small to be neglected is that

pgLic <1, (2-26)
this being a restriction additional to (2-2).
The general field equations are therefore given by (2:1), (2-21) and (2-24).
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PLASTIC DEFORMATIONS IN SOILS 13

3. STRONG DISCONTINUITIES IN FIELD QUANTITIES

In this section, a discussion will be given of space-discontinuities (or jumps) in the
velocity and stress components and the density. A comprehensive treatment would be
lengthy and will not be attempted here. Moreover, it seems preferable to confine attention
initially to fundamentals and to leave detailed aspects for later consideration directly in
relation to the actual solution of problems.

The analysis of the field equations, developed generally in §2 (specialized later in §4
to the various individual plastic régimes) implicitly assumes certain conditions of con-
tinuity and differentiability on the velocity and stress components and the density. In
other words, the concern there is to study stress and velocity fields on the supposition that
discontinuities only of a weak nature are perhaps involved. However, in any particular
problem, strong discontinuities in the stress and velocity fields may be involved, and in
these circumstances at least some of the fundamental differential equations must be re-
placed locally by finite relations. As will be seen, such discontinuities can arise in a variety
of ways. In general, of course, special conditions must be satisfied if postulated discon-
tinuities are actually to occur. The main purpose of the present discussion is to show how
the permissible discontinuities and associated conditions are determined.

i) (i)
N
NN
R
Sn

T(t)

Ficure 4. Space-discontinuities.

T(¢)

Under the present restriction to axially symmetric conditions, any possible jumps in
physical quantities must necessarily take place across curves in an axial plane. Let I'(¢)
be a simple open curve (see figure 4 (i)), in general varying with the time, drawn in an axial
plane. Suppose that an isolated finite jump in at least one field quantity, say G, occurs
everywhere along I. Such a discontinuity is to be regarded mathematically as the limit of
a continuous distribution that changes by a certain amount across a narrow region enclosing
I" as this region everywhere shrinks up to I'. Itis convenient to think of this region as a strip
with its edges either parallel or normal to I'. The amount of the jump in G across I is

deﬁned by [G] — Gt —G-
where G* =lmG(P, ;) as P, — P,}

in the notation of figure 4 (1).

Prager (1954) has given a systematic discussion and classification of discontinuities in
(generalized) stress and velocity fields occurring in non-hardening plastic, rigid continua.
Of course, certain discontinuities in physical quantities cannot be precisely true in a natural
solid material. Strictly, various aspects of mechanical behaviour, such as effects due to
elastic strain, strain-hardening and viscosity, all of which are neglected here, will act to
diffuse sharp discontinuities into a gradual transition over some region. The physical

(3-1)


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

14 A. D. COX, G. EASON AND H. G. HOPKINS

interpretation of discontinuities occurring in ideal continua obviously requires considerable
care.

For simplicity, the arguments of the present section will be largely formal, the exact
statement of analytical conditions sufficient for the validity of the results being omitted.

It should be noted first that there are kinematical restrictions on permissible jumps in the
derivatives of a continuous quantity. Now let n, s be local rectangular Cartesian co-
ordinates, respectively normal and tangential to I" at a point P, as shown in figure 4 (ii).
Here, it is found convenient to regard G as a function of the variables n, s, t. The equation
to I' is taken to be g(n,s,?) = 0, where the value of g increases in the normal direction.
Suppose that G is continuous across I, i.e. [G] = 0. Then it is straightforward to prove that

[0G/ds] = 0, V[dG/on]+[0G/dt] = O,

dg |0g (3-2)
where V= ~3¢ an
is the normal speed of propagation of I'(¢) at P(¢) (see, for example, Hopkins 1957). Thus,
dG[ds is always proved continuous. In respect of dG/dn and dG/dt, however, two cases arise,
namely, (i) if V' = 0, then dG/dt is proved continuous but dG/dn may be discontinuous, and
(ii) if V' = 0, then dG/dn and dG/dt may be either continuous or discontinuous together. Of
course, whenever the argument establishes the continuity of a derivative of G, a second
application establishes further results.

Now space-discontinuities in particle displacement must correspond to fracture and must
therefore normally be excluded. However, as will be seen, space-discontinuities in particle
velocity, stress and density may occur. In proceeding, it is necessary to make use of certain
physical laws. The general dynamic case will be considered first, and the quasi-static case
will be properly regarded as a specialization. The arguments involved closely parallel
those employed in fluid mechanics (see, for example, Howarth 1953). In order to obtain
the discontinuity conditions, it is simplest to consider the motion relative to I' in the im-
mediate vicinity of the point P being considered. Suffixes 7, s are used to denote com-
ponents of quantities with respect to the frame P(n,s). Let n, s be unit vectors along the
positive n, s directions, respectively. Then the particle velocity is q = v,8+v,n. Consider
an elementary region ds x dn where ds > dn as shown in figure 4 (i). The application of the
basic laws of mechanics to this element of material, allowing dn to tend to zero and ds to
become arbitrarily small, provides the required jump conditions on physical quantities.
First, the law of conservation of mass requires the rates of inflow and outflow of mass to
balance. This condition leads to

[m] =0, where m=p(v,—V), (3-3)

so that the mass flux misunchanged across I'. Secondly, the rate of change in linear momen-
tum of the particles passing through the element is equal to the external forces acting on
the element. This condition leads finally to

m[q] = [Z], where Z =g¢,n+7,s8, (3-4)

in view of (3-3). The application to the element of the laws of conservation of energy and
of non-decrease in entropy would provide further results, but these results are not directly
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PLASTIC DEFORMATIONS IN SOILS 15

of interest here as attention is merely being given to a limited description of the thermo-
dynamical state. Suppose now that quasi-static conditions apply so that the motion
proceeds indefinitely slowly. More precisely, if v and ¢ are a typical particle velocity and
stress, it is assumed under quasi-static conditions that

pov?lo < 1. (3-5)

The physical conditions (33, 4) on jumps now simplify to
lo(v,— V)] = (3-6)
and [on] =0, [Tns] = 0. (37)

Now no restrictions have been established here on possible jumps either in the tangential
velocity component v or in the direct stress components ¢, and ¢y, and these quantities
may possibly be (although are not necessarily) discontinuous.

The fundamental results necessary for the discussion of jumps in physical quantities are
contained in (32, 6, 7). The cases that arise may be classified in the following manner. Let
D* denote the two regions nZ 0 separated by I' (see figure 4 (ii)). First, either (i) ®* are
both below yield, or (ii) ®~ (say) is below yield and D* is at yield, or (iii) D+ are both at
yield. Of course, if a region is below yield, then it is rigid ; but, on the other hand, if a region
is at yield, then it is not necessarily deforming plastically. Clearly, the cases (ii) and (iit)
which involve plastic stress and velocity fields are of principal interest. Secondly, these
cases may be subdivided according to the plastic régimes involved. In case (iii), different
plastic régimes may apply in ®*. Thus, there are a considerable number of different
circumstances that would require attention in any complete discussion. Ifthere are points
of intersection between two or more boundaries I, then special attention must be given to
conditions at such points (cf. Winzer & Carrier 1948).

Attention here, however, will be confined merely to a discussion of one particular matter
of obvious interest. Consider the implications of velocity discontinuities. In the special
case when ¢ = 0, (2-24) shows that p is constant, so that, from (3-3), [»,] = 0, and hence
the only possible discontinuity is [»,] < 0. In this event, ,, = 4(dv,/ds+dv /dn) is in-
definitely larger than both ¢, = dv,/dn and é, = dv,/ds, and therefore I" must bisect the direc-
tions of principal strain-rate. It follows from the flow rule relations given in (2-21) that such
a discontinuity is possible only for plastic régimes 4, F and /4, i.e. groups ITI and IV. In
the general case when ¢ =+ 0, there are three possibilities, viz. (i) [v,] = 0 and [»,] = 0,
(ii) [v,] = 0 and [v,] = 0, and (iii) [v,,v,] #+ 0. With use of the flow rule relations (2-21),
(1) and (ii) can be shown not to be possible with a finite value of é; = u/r. Thus, the only
possible type of velocity discontinuity in a frictional medium is one in which both v, and v,
are discontinuous, implying that incipient separation of adjacent lines of particles occurs.
Further, it appears from (2-21) that such a discontinuity is possible only for plastic régimes
4, F and FA, i.e. groups III and IV. In addition, it may be shown that [v,] = [v,] tan ¢
and that I must make an angle + (374 1¢) with the first principal strain-rate direction.

The discussion of stress discontinuities is best considered following the more detailed
study of the governing equations (such discussion is given later at the end of § 4-3 for plastic
régimes 4 and F).
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16 A. D. COX, G. EASON AND H. G. HOPKINS

PART II. DETAILED THEORETICAL ANALYSIS

4. ANALYSIS OF FIELD EQUATIONS FOR INDIVIDUAL PLASTIC REGIMES

The general field equations derived in § 2 will now be specialized to the various plastic
régimes of groups I to I'V and an analysis will be given of their mathematical structure.
Anticipating the conclusions to be drawn in §4-5, wherein is given a summary of the
results obtained in §§ 4-1—4, it may be stated that the plastic régimes of group III are con-
jectured to be of major importance in practical applications of the theory. For this reason,
the discussion of these régimes given in § 4-3 is more detailed than that given for the other
régimes. ,
Groups I to IIT each involve two plastic régimes, but nevertheless a single analysis
suffices for both cases.
4-1. Group I. Plastic régimes B and E
The plastic régimes B and E comprising group I are semi-isotropic and singular, the former
corresponding to a higher mean value of the principal stresses than does the latter, for a
given value of ¢,. In both plastic régimes, the condition
0y = 0, (4-1-1)
holds and therefore (see (29))
0, =0,=0,=0, T,=0. (4-1-2)

In proceeding, it is convenient to characterize the two plastic régimes B and E respectively
by the introduction of a pure number @ equal to +1 or — 1. Then, in either case, the com-
plete yield condition given by (2-21) is now

Urzaz:<Y+00)/k’ ‘
i 4-1-3
where k= livlgr_l_@, _ 2w C(?5¢ } ( )
1—wsing 1 —wsing

Substitution of (41,2, 3) into the equations of equilibrium (2-1) shows that o, satisfies

the equations 3 y \
JT JT —

a (4:' 1 '4:)

a5 (0, 1pgz) = 0.

If ¢ > 0 (i.e. k£ = 1), then (4-1-4) admit no solution unless the soil-weight term pgz is neg-
lected. On the other hand, if ¢ = 0, then (4-1-4) admit a general solution. In the first case,
it can be shown that

0, =0,=ccotp+D rk1 )

0y = ccotg+D, krk1 } ¢ >0, pgljc <1, (4:1-5)
. 1 )

where D, (< 0 because of (2-18)) is an arbitrary constant, whereas in the second case

o, =0, =—2wclnr—pgz-+D,,

r z Ps 2 } ¢ _ 0, (4_.16)
7o = —2wc(1+1n7) —pgz+ D,,

where D, is an unrestricted arbitrary constant. The occurrence of certain singularities in
the stress field at 7 = 0 may be noted.
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PLASTIC DEFORMATIONS IN SOILS 17

Elimination of the parameters A and g from the flow rule (2:21) provides one relation
between the principal strain-rates. Since the directions of principal stress are not unique,
the usual condition of isotropy fails to provide a further explicit relation between the
principal strain-rates. In general, therefore, the velocity field is not determinate, being
governed only by the single equation

du Jw  ku

I PR
and the conditions @6y, €y —é5) = 0, (1)
where (61690 €) = {(max, min) (gl;‘ %") , g}

The radial velocity component « is therefore uniformly negative or positive for the plastic
régimes B and E, respectively.

4-2. Group I1. Plastic régimes AB and EF

The two plastic régimes AB and EF comprising group II are regular, the former corre-
sponding to a higher mean value of the principal stresses than does the latter, for a given
value of ¢,. These plastic régimes are characterized essentially by the vanishing of either
one of the two principal strain-rates in an axial plane, i.e. one of ¢, and ¢, is zero (see (2:21)).
A second relation between the strain-rates follows from the elimination of the parameter A
occurring in the flow rule (2-21).

In proceeding, it is convenient to characterize the two plastic régimes AB and EF,
respectively, through the introduction of a pure number @ with values 41 and —1. Then,
in both cases, equations (2-11, 21) show that the velocity field is governed by

u Odu  Ow du dw\?2 [du  Ow\2\*
k= ata = {(a‘;“az) +(9z+7?7)}’
1+wsing
1—wsing’

(4-21)

where k=

As @ = sgn (—u), it follows that the radial velocity component is uniformly negative or
positive according as plastic régime AB or EF applies. Thus, descriptively, waisting or
barrelling may be said to occur in axial planes.

It is apparent from equations (4:2-1) that the velocity field is kinematically determinate
(see §4-5) and the structure of these equations will now be examined.

Now the first equation (4-2-1) may be written in the form

d i}
o (r*u) + 7z (rfw) =0,

so that the velocity components , w are expressible in terms of a velocity function V(r, z),

namely ov )4
-k =y 9.
u=rta, w= P B (4-2-2)

The equation satisfied by V is, from the second equation (4-2-1),

(02V 2V koV 02V (02V  koV
) e ) o
drdz

ar: 0z r or (42:3)

0rdz r 0z

3 VoL. 254. A.
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18 A. D. COX, G. EASON AND H. G. HOPKINS

Equation (4-2-3) is a non-linear second-order partial differential equation for V. In order
to find the nature of this equation, suppose that « and w (i.e. dV/dr and dV/dz) are given on
some curve 1" and it is required to find ¥ and w in the neighbourhood of this curve. From
equation (4-2-3), together with the equations expressing the known variation of dV/dr
and dV/dz along I', namely

2 2
d((?V) a2V an

) = a2 Yt
(4-2:4)
2V . oV

av
A(32) = gz %
the second-order differential coeflicients 02V/dr2, 9%V /drdz, 0*V]dz? can always be found,
provided that the problem is well set. However, from the equations corresponding to
(4-2-4) for the variation of these last differential coefficients along I, together with the
differential form of (4-2-3), the third-order differential coefficients of ¥ cannot be deter-
mined uniquely if the curve I'is such that along T,

1dz(32V 2V k(?V): ?’V  kdvV 32V}

sdr\92 " Ty ar Tz oz - 0rdz’
or, using (2-12, 2-21, 4-2:2), dz/dr = tany, —coty.

(4-2+5)

In other words, (4-2-3) is hyperbolic with characteristic directions given by (4:2-5), namely
the directions of principal strain-rate.

Attention will now be given to the structure of the equations governing the stress field.
'The two equilibrium equations (2-1), the yield condition (2-21) and, since 7 is known from
the solution of the velocity field, the isotropy condition (2-14) are available to determine
0,, 0 0, and 7,,, namely

rz

6‘0 Jr,, o,—o,
o oz T =0,

aTTZ ao— rZ
o Tz Ty TrE=0;

(0 TV~ 30,02 (40,0 1 (#:2:6)
o,—0, =21, cot2y,

2wc cos ¢
1—wsing’

where Y =

From the second equation (4-2-6) it is apparent that 7,, and ¢, and hence, with use of the
third and fourth equations, that ¢, and ¢, can all be expressed in terms of a stress function
®(r,z). Substitution of these expressions into the first equation leads to a second-order
linear partial differential equation for ® which is easily shown to be hyperbolic and to have
the same characteristics as the equation (4-2-3) for the velocity function V.

4-3. Group II1. Plastic régimes A and F

The two plastic régimes 4 and F comprising group III are singular, the former corre-
sponding to a higher mean value of the principal stresses than does the latter, for a given
value of ¢y These plastic régimes are characterized essentially by the equality of the cir-
cumferential principal stress with either one of the two principal stresses in an axial plane,
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PLASTIC DEFORMATIONS IN SOILS 19

namely either ¢, = ¢, or ¢, = ¢, according as plastic régime 4 or F applies (see (2:21)).
Thus the Haar & von Kdrman (19o9) hypothesis is satisfied by the present plastic régimes.
In proceeding, it is convenient to characterize the plastic régimes 4 and F, respectively, by
the introduction of a pure number w with values +1 and —1.

Consider first the equations governing the stress field. There are available two equi-
librium equations (2-1) and two yield conditions (2-21) for the determination of four stress
components ¢,, 0y, ¢, and 7,,. Therefore the stress field is statically determinate. Now from
(2-8,21), the yield criterion may be expressed as

05 = }(0,+0,) —ok(0,— )2 +1L R,
(05 + D)k = }(0,+0.) +alh(0,—0.) 2+ 721,

_l+4wsing ,  2wmccosg
~ l—wsing’  1—wsing’

(4:31)

where k

The elimination of ¢, from (4-3-1) gives
("COS¢A%Sin¢(0‘r+0’z) = {%(Jr_az)z_‘_T?%z}%' (43.2)

By itself, the yield criterion imposes just two independent conditions on the four stress
components. It follows that possible yield stress states may be represented in terms of two
independent parameters which it is convenient here to choose as a pressure

P(r,z) = —3(0,+0,) = —5(0,+0y) (4-3-3)
and the angle 7(r, z) which specifies the orientation of the principal axes of stress. Let
Q(r,z) = (0, —03) =0, (4:3-4)

and then, from (2-9) and (4-3-1), the stresses are given generally by

z

0,=—P+Qcos2y, o,=—P—Qcos2y, o,=—P—w@, 7,,=Qsin2y, 435
where now Q = Psing+ccos¢ > 0. } ( )
If @ = 0, then there is an isotropic stress state with ¢, = 0, = ¢, = c¢cot ¢ and 7,, = 0, which
corresponds of course to the vertex of the yield pyramid. However, this situation has
explicitly been excluded. Admissible yield stress states must satisfy the condition of equi-
librium. Thus, the functions P and # satisfy two simultaneous first-order non-linear partial

differential equations found from the substitution of (4-3-5) into (2-1), namely

. oP .. il . . 0n dp 1 _
(1 —sing cos 27) o —sin ¢ sin 27 e +2Q‘s1n 2775;——005 2y 52~~2;(w+cos 27]); =0,
9P aP ? ay 1 (#:3:6)
sin ¢ sin 277;?; — (1+sin @ cos 277)9—2 +2Q{cos 2177;7+sin 277£+—2;sin 27]} +pg = 0.

The discussion of the characteristics of the stress equations (4+3-6) is quite straightforward.
In the usual way, if P and 5 are given on I, then dP/dr, dP/dz, dy/dr and dy/dz on I' are given

from (4:3-6) together with

2deH—ﬁ)dz«dP =0,

or 0z
3 3 (4-3-7)
e/ Mz —dpy —
7 dr+ s dz—dy = 0.


http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

0
%

SOCIETY

I B

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

20 A. D. COX, G. EASON AND H. G. HOPKINS

Then discontinuities in the first-order derivatives of P and 7 across I' only occur if the matrix
of the coefficients in (4-3-6, 7) has rank 3, so that all fourth-order determinants formed from
this matrix vanish. The characteristic directions dz/dr are given from the vanishing of the
determinant formed from the elements of the first four columns of this matrix, i.e.

(sin g+ cos 27) (dr)2+2sin 2pdrdz+ (sin g —cos 27) (dz)2 = 0, (4-3-8)
and therefore dz/dr = tan (p—t7—3¢), tan (p+im+34). (4-3-9)

Accordingly, the characteristics are real and distinct, and therefore the stress equations
are hyperbolic. The two characteristics through any point intersect at a constant angle
37+ @, so that in general the characteristics are not orthogonal.

Now let ¥ =9—(3r+19), (4-3-10)
and name the characteristic with slope tan ¥ an « line and that with slope tan (¢ + 7+ ¢)

a fline. Then the characteristic relations, which result from the vanishing of all other fourth-
order determinants formed from the above matrix, are found in the form

cos ¢dP+2Qd;ﬁ——$2{c0s (V+¢) —wsiny}ds,—pgsin (Y +¢)ds, =0 on an « line,

cos ¢dP——2Qd¢——g—{cos (¥ +¢) —wsiny}ds;—pgcosyds; =0 on af line,

(4-3-11)
where s, and s, are arc lengths measured along the « and £ lines, respectively.

Consider next the equations governing the velocity field. First, there is the equation
of isotropy é,—é, =2, cot2y, (4-3-12)
where 7 is known from the solution of the stress equations. Secondly, there is the equation
which arises from the elimination of the parameters A and 4 from the flow rule (2-21), namely

é,+é,+ (1 +wsing) é, = sing{(é,—¢,)2 +4792 . (4:3:13)

Substituting from (4-3-12) into (4-3-13) and making use of the fact that ¢,—é, and cos 2y
have the same sign (see (2-13)), it is found that (4-3-13) is simply

é,+é,+ (1+wsing) é, = (6,—¢,) sin ¢ sec 2. (4-3-14)

Accordingly, the velocity components z and w satisfy the two simultaneous partial

differential equations
sin 2 @~c052 —a—z—t——COSQ éli}—sinZ ow _ 0
Tor "9z " or 19 =
(4-3-15)
. du . dw . u
(sin ¢ —cos 27) Fri (sin ¢+ cos 27) Froh (1+wsing) cos 2= 0.
A discussion similar to that given for the stress equations (4-3-6) shows that these equations
are hyperbolic, with the same characteristics (4-3-9) as the stress field. The characteristic

relations are, in the same notation as before,
. . ds .
cos;/fdu+sm¢dw+(l+wsm¢)u—27"‘: 0 on analine,

4 (4-3-16)
sin (Y +¢) du—cos (Y +¢) dw— (1 +wsing) u?sf. =0 ona/f line.
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PLASTIC DEFORMATIONS IN SOILS 21
The velocity field must also satisfy the inequality conditions of (2:21), namely
(61, — 64y —wWég) = 0, (4-3-17)

and it is easily shown, with use of (4:3-13), that necessary and sufficient conditions for
(4-3-17) to hold are that

b6, > —kép, —wéy>= 0. (4:3-18)

Finally, consider the situation of a discontinuity in stress across a curve I (see figure 4 (ii))

that separates regions in which either of plastic régimes 4 and F applies. Let the normal to

I' at P make an angle W with the » direction as shown in figure 4 (ii). Then, with use of

(4-3-5), it follows that
o,=—P+Qcos2(n—Y),

o, =—P—Qcos2(p—Y), (4-3-19)
T, = @sin2(p—¥F).
Now [0, 7,,] = 0 but, by hypothesis, [¢,] = 0. Itis straightforward to show that y*, defined
in (3-1), satisfy the relation
cos (gt +9~—2%¥) =sin¢ cos (" —7y7). (4+3-20)

If [5] is known, then [¢,] can be found from, say, the condition [@ sin 2(y —¥)] = 0. Simi-
larly [o,] can be found, and it is interesting to note that only [¢,] depends upon @, i.e. upon
which of régimes 4 and F applies in @~ and in ®*. The relation (4-3-20) also occurs in work
by Shield (1954 @) concerning plane plastic strain.

4-4. Group IV. Plastic régime AF

The single plastic régime comprising group IV is regular.
Consider first the equations governing the velocity field. The flow rule (2-21) shows that

éy = 0, and therefore — (4-4-1)
Thus the only non-zero strain-rates are

w1
ez“aza 772._237,' (4"4'2)

The elimination of the parameter A from the flow rule (2-21) furnishes an equation for w,

namely
dw . dw\?2  [dw\?\*

no further inequality conditions on w being necessary. Thus, w satisfies the equation

. 0w dw
msmgzﬁyr +COS¢3—Z = 0,
dw (4-4+4)

where w = sgn (—W) .

Now introduce rectangular Cartesian co-ordinates X, ¥ defined by

X =rcosp—wzsing, Y = wrsing-+zcosg. (4-4-5)
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22 A. D. GOX, G. EASON AND H. G. HOPKINS
Then (4-4-4) shows that dw/dY = 0, so that
w = w(X) = w(rcos ¢ —wzsing). (4-4-6)
Also, from (2-13) and (4-4-3,4),
tan 2y = wcotyd, cos2y <O, (4-4-7)
so that 7 =%n+w(in—1ig). (4-4-8)

Now consider the equations governing the stress field. There are available the two
equilibrium equations (2-1), the isotropy equation (2-14) and the yield condition (2-21)
for the determination of the four stress components ¢,, 7,, 0, and 7,,. The equation of isotropy
shows that w71,, = $cotd(o,—0,). (4-4-9)
From (2-8,10,17) and (4:4:7,9), the yield criterion (2-21) may be written in the form

cos?¢o,— (1+sin?¢) 7,4+ 2ccos ¢ sing = 0. (4-4-10)

The elimination of ¢, and 7,, between (2-1) and (4-4-9, 10) gives an equation for ¢,, namely
(w sin ¢(%+cos 5’5362) {r(¢,—ccotp+Lmpgrcotd)} = 0. (4-4-11)
Thus, it follows that

r(o,—ccotg+$wpgreotg) = F(X) = F(rcosp—wmzsing), (4-4-12)

where F is an arbitrary function of X only. Thus, (2-1) and (4-4-9,10,12) now determine
all the stress components in the form

B 1+sin%¢ 1+sin?g F )
0, = ccotg—w sin 2¢ pT T cos’g 1’
in2
Ty = ccot¢—~2w1:i_rsllggsjpgr%—secgzigg,

- - (4> 0). (4+4-13)
o, = ccot¢~—%mcot¢pgr+7,

TTZ

— m%pgr+wtan¢£r‘,

Finally, certain inequality conditions on the stresses must be satisfied. The condition
v, > 0, (see (2'9) and (4-4-7)) requires that

F—lopgricotd <0, (4>0). (4-4-14)
Also, the condition ¢, = 0, > 0, (see (2:21)) requires that
1—sing P dF  14sin’¢
“cosp (F—Ywpgricotg) = TixX wmsinqﬁ pgr
> US00 p_topgrtcotg), (¢>0).  (44-15)

cos ¢

The condition (4-4:14) is implied by (4-4-15). The above formal solution for the stress
components needs modification in the case ¢ = 0. The procedure is to replace F(X) by
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PLASTIC DEFORMATIONS IN SOILS 23
{G(X) —ccosec p+ twpgX?cot ¢}, and to let ¢ — 0. Then it is found that expressions for the

stress components are
z G
g, = wc;—pgz+7,
dG
g = —pg8z+—=-,
0 PTGl 52, (4-4-16)

z G
o, = wc;—pgz+ P

T, = —C, J

rz

where G = G(r). Itis to be noted that now ¢, = ¢,, and the condition that ¢, is the inter-

mediate stress is

z dG G z
m;+c>~5;~—r~>wc;wc, (¢ =0). (4-4-17)

Again, if the effect of soil weight is negligible, then (4-4-15) simplifies to

tan (Jr—39) F > o > tan(ir - 49) F, (9> 0,pelfc<1).  (44:18)

4-5. Summary of structure of field equations

In general, it is necessary perforce to adopt an heuristic method of procedure in the
solution of plastic problems. This situation is due, of course, to the requirement that the
plastic régimes involved, together with the extent of the regions in which they occur, must
be postulated a priori. Now, naturally, this procedure is planned, at least tentatively, on the
basis of physical intuition and past experience, taken in conjunction with the nature of the
boundary conditions appropriate to the problem in hand, and with knowledge of the
fundamental nature of the stress and velocity fields generated by the various possible
plastic régimes. It is appropriate, therefore, to summarize briefly here the salient features
of the structure of the field equations for the plastic régimes as found in §§ 4-1-4.

For convenience of discussion, the terms statically determinate and kinematically determinate
are used in their loose sense. Thus, a stress field is said to be statically determinate if there are
available for its determination as many equations involving only the stresses as there are
unknown stress components, no consideration being given to the availability of sufficient
stress boundary conditions. Similar remarks apply to kinematically determinate velocity
fields.

The principal results that have been found are as follows:

(a) Group I. Plastic régimes B and E. These régimes are semi-isotropic and singular. In
general, no solution is possible for the stress equations. In two special cases, when either the
internal friction of a soil, or its weight, are neglected, the stresses are given by simple explicit
expressions. The velocity field is indeterminate.

(6) Group II. Plastic régimes AB and EF. These régimes are regular. The velocity field is
kinematically determinate and is hyperbolic, with characteristic directions coincident
with the principal strain-rate directions (and, equivalently, the principal stress directions).
The stress field is hyperbolic, its characteristic directions coinciding with those of the
velocity field.
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24 A. D. COX, G. EASON AND H. G. HOPKINS

(¢) Group III. Plastic régimes A and F. These régimes are singular and in accord with the
hypothesis of Haar & von Kdrman. The stress field is statically determinate and is hyper-
bolic with characteristic directions inclined at angles -+ (374 3¢4) with the direction of
the algebraically greater of the principal stresses in the axial plane. The velocity field is
hyperbolic, its characteristic directions coinciding with those of the stress field.

(d) Group IV. Plastic régime AF. This régime is regular. The directions of principal strain-
rate (and, equivalently, of principal stress) are fixed in direction, and the stress and velocity
equations are therefore virtually uncoupled. Thus, the stress field is statically determinate
and the velocity field is kinematically determinate. The stress components satisfy simple
linear first-order partial differential equations and are given in terms of a single arbitrary
function. The radial velocity componentis zero; the axial velocity component, which satisfies
a simple linear first-order partial differential equation with constant coefficients, is given
in terms of a second arbitrary function.

The most striking feature of the structure of the field equations for the various plastic
régimes is that in no case are the equations elliptic. In problems whose solution involves
the determination of the position of internal boundaries, as is normally to be envisaged, the
advantage of dealing with non-elliptic partial differential equations is obvious.

The relative importance of the stress and velocity fields generated by the various plastic
régimes can only become apparent in the course of the solution of problems. However, it
is possible to make some preliminary conjectures, some of which have been anticipated at
the beginning of this section. First, except under very special conditions, no solution is
possible to the field equations for group I. Secondly, the fact that for group IV the radial
velocity component is zero suggests that its application will be very limited. Accordingly,
interest is now centred on the plastic régimes of groups IT and III which all generate hyper-
bolic stress and velocity fields with coincident characteristics. The latter case is the simpler
of the two, because the stress fields are statically determinate. The above arguments seem-
ingly focus attention in preliminary investigations particularly (although not exclusively)
on the stress and velocity fields generated by the plastic régimes of group III in connexion
with the solution of problems of interest. This conclusion lends some support to, although of
course it clearly does not substantiate, the ad foc adoption of the Haar & von Karman
régimes often made by writers (see, for example, Berezancev 1955 and Ishlinskii 1944) in
the solution of problems. Hill (1950) has also commented on this procedure. In part ITI
of this paper, attention is confined to some illustrative problems of fundamental interest
whose solution does involve attention only to these particular fields.

PART III. APPLICATIONS OF THEORETICAL ANALYSIS

5. INCIPIENT PLASTIC FLOW IN A RIGHT CIRCULAR CYLINDRICAL
SAMPLE OF SOIL UNDER UNI-AXJAL COMPRESSIVE STRESS

In this section, a discussion will be given of the incipient plastic flow of a right circular
cylindrical sample of soil stressed to the yield-point by uni-axial compressive stresses
parallel to its axis. The purpose of this discussion is mainly illustrative, but the analysis is
also of interest in connexion with the compression testing of small soil samples. Haythorn-
thwaite (1960) has given a closely related discussion directly pertaining to the theory of
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PLASTIC DEFORMATIONS IN SOILS 25

the tri-axial test for soils, failure being due to either axial extension or axial compression,

particularly with reference to sands in the former case.
Take the z axis to coincide with the axis of the sample, supposed vertical, and then let
the sample occupy the region, ~
0<r<R 0<z<H, (5-1)

R and H being its radius and height (see figure 5).

o, = —2¢tan ({7 +1¢)

ARRRRREER

S e L e

i
i_.ﬁ_,
e

o, = —2 tan (}m+4¢)

Ficure 5. Circular cylindrical sample of soil stressed to yield-point
under uni-axial compression.

The equilibrium equations (2-1) are identically satisfied if

7, = (”z)z——*o_pgz? (5.2)
all other stress components being zero. As here ¢, = 0, 7, < 0 and o3 = 0, it follows that

plastic régime F applies at the onset of plastic yielding. If gravity effects are important, it
is clear that the restriction

—(0.)z2n = —(0,) 0 +pgH < 2¢tan (37 +39) (5-3)

must apply. Inequality in (5-3) means that yielding nowhere occurs, whereas equality in
(5-3) means that plastic flow is initiated just at the section z = H. Thus, plastic flow, when it
occurs, is simply restricted to the lower end of the sample. However, the situation when
gravity effects are negligible, say pgH/c < 1, is very much more interesting because plastic
yielding can now occur throughout regions of the sample, and this is possible when

g, = const. = —2ctan (}7+39), (5-4)

all other stress components of course vanishing. The stress field is manifestly quite trivial
but, nevertheless, surprisingly interesting results are obtained in connexion with the
velocity field. In the present circumstances of incomplete specification of the velocity
boundary conditions, it is not expected that the mode of deformation in incipient plastic
flow is necessarily unique. In fact, in this section, several different velocity fields will be

4 Vor. 254. A.
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derived as illustrative examples of possible solutions. The question of uniqueness in the
theory of a rigid-plastic solid has been discussed in detail by Hill (19564,5, 19574, 5).
Although the general analysis of §4-3, with w = —1, applies to the present problem, it is
more convenient here to make a direct approach.

The boundary condition that the normal velocity component is constant over an end of
the sample will be assumed, namely

w=wy=const. >0 on O0<r<R, z=0. (5+5)

Now remembering the stress distribution, it follows from (4-3-5) that 1 — cos 29 = sin 2y = 0,
and therefore 7 = 0. Hence the two families of characteristics comprise parallel straight

lines defined by U = — (n-+14) = const. (< 0). (5-6)

In other words, the o and /£ lines are inclined at constant angles F (17 +14) to the r direc-
tion. It may be noted that Q — —ctany- (5+7)

The velocity components #, w must of course satisfy (4:3-16), but because of the relative
simplicity of the present problem, it is preferable to consider directly the original veloc1ty
equations (4-3-15) which here take the form, '

ﬂu ow ﬂu Uy oy 00

(a) First velocity field. The simplest possible type of velocity field is derived on the basis
of the plausible assumption that whwy = 1—z/h, (5-9)
where £ is an arbitrary positive quantity having the dimensions of length. The case when
h = H is just one obvious possibility. Thus, w = w, at z = 0, in agreement with (5-5), and
w = 0 at z = h. The substitution of (5-9) into (5-8) shows first that « = u(r) only and then

that ulw, = tan?y r/2h, (5-10)

infinite values of « at r = 0 being excluded. The velocity field (59, 10) satisfies the condi-
tions (4-3-18).

(b) Second velocity field. Suppose next that plastic flow is confined to the finite region
OA4B, shown in figure 6, which lies between z = 0 and the f line through O. It is supposed
here, of course, that A > Rtan ({m+1¢) so that the velocity field can be accommodated.
'The angle between 04 and OB is of course 447 +¢ = tn+14 = —y. The region above
OB is supposed to be rigid.

Two possibilities now arise, according as whether or not the velocity is assumed con-
tinuous across OB. In the former case, the appropriate velocity boundary conditions
arc u=w =0 on OB. In the latter case, the final discussion given in §3 shows that
[v,] = [v,] tan ¢, which implies that

u=wtan (}mr+34) on OB. (5-11)
As OB is a ff line, (4-3-16) shows that - -

du-ttan (}r+3¢) dw+u¥ =0 on 0B, (512)
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PLASTIC DEFORMATIONS IN SOILS 27
The general solution of (5-11,12) is S
u=wtan (dn+14) = Dr* on OB, (5:13)

where D is an arbitrary constant. However, the velocity components on OB are not finite
at 7 = 0 unless D = 0, in which case the velocity is not in fact discontinuous across OB.
Therefore, the velocity boundary conditions must be taken as

u=w=0 on OB, (5-14)
i.e. the velocity is continuous. Now let
ulwy=1u', wwy=w, r/[L=7r, z|]L=2, (5-15)
rr\i\r\'R\\\N
3
2 iy i
% 2¢ tan(3m+39)
E fHHH [s T
3 (K
z V' =
e
5
S E
,)\9// w B 3?,
rmsig
2
X o |
0 A "
ARRRSRRARERN
S w=w,

Ficure 6. Circular cylindrical sample of soil. Second velocity field.
Plastic yielding confined to region OA4B.

where L is a typical length, so that «’, w’ and 7/, 2’ are non-dimensional velocity com-
ponents and co-ordinates. Then the problem is to find the solution of

ou'  ow'  ou o g 0w )
subject to the boundary conditions
w'=1on 04 and u' =w" =0 on OB. (5:17)

The boundary conditions on 4B are not specified, and as (5:16,17) do not involve any
fundamental lengths it follows that «" and w’ are simply functions of z'/#’. In proceeding,
it may therefore be assumed that the velocity components # and w at a general point P(7, z)
of the region OAB depend only on the angle y between OP and the 7 direction, i.e.

tany =zfr (0<x < 3m). (5-18)
Equations (5-8) may now be written in the form,

dw

a

cosxg—;—sinx
O<y<—¢=in+id), (5:19)

sinxg—;z —usec y—tan? y§ cos ¢§% =0,
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where u and w are regarded as functions of x. The boundary conditions are now
wlwy=1 on x=0 and | ujwy, = wjw, — 0 on X =—9 = 3m-+14. (5-20)
It is straightforward to show that the velocity field is
ulw, = % (tan2 ¢ —tan?y)3,

O<x<-—9), (5-21)
wjw, = %arc cos (—tany/tany),

the value of the inverse cosine lying in the range (0, 47) (cf. Haythornthwaite 1960). It is
simple to show that (5-21) satisfy the conditions (4-3-18). The functions u«(x) and w(y) are
exhibited in figures 7 and 8, respectively, for ¢ = 0°, 20°, 40°. The resulting deformation of

1'5

1

=40°

10

FiGure 7 X (deg)

Ficure 8

Ficure 7. Variation of u(x)/w, with x (0 < x < im+1¢) for ¢ = 0°, 20°, 40°,
X<

<
Ficure 8. Variation of w(y)/w, with ¥ (0 < 37+ %¢) for ¢ = 0°, 20°, 40°,
a square grid when the above velocity field is maintained for a short period of time is shown
in figure 9 for ¢ = 0°, 20°, 40°. It should be noted that the velocity field is not single-valued
at 0. In fact, u/w, ranges from 0 to — 4 tan ¥ and w/w, ranges from 0 to 1 as } ranges from
0to —y. :

(¢) Third velocity field. Finally, a slightly more complicated form of velocity field will be
considered. Itissupposed that plastic flow is confined to the finite region 0ABC of figure 10,
where C4 and CB are the a and £ lines, respectively, passing through the point C on the
z axis and at a distance & = — R tan § from O. The boundary conditions on the velocity field

are wjwy =1 on 04 and wu/w,=wjw,=0 on CB, (5-22)
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T (iii)
l_\,_wr—vv"\'—*—'\
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P4 P | | N ¢ /A WA A
) SRR, and g e o e

Ficure 9. Circular cylindrical sample of soil stressed to yield-point in compression. Resulting
deformation of a square grid if velocity field of figure 6 is maintained for a short period of time.
(i) ¢ = 0° (cf. Shield 19555, figure 6). (ii) ¢ = 20°, (iii) ¢ = 40°.

o

2¢ tan(3m+39) s

>\ b

NIt/

£

59

H 7 v Br

% -
(K p T

X

R
>
R
[P —

T

w=w,
Ficure 10. Circular cylindrical sample of soil. Third velocity field.
Plastic yielding confined to region OABC.
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30 A. D. COX, G. EASON AND H. G. HOPKINS

the latter conditions following from the fact that the region above CB is supposed rigid,
exactly as in () above. The velocity field in the region OAC is assumed to be that derived
in (a) above, now with 2 = — Rtan ¢, namely

ufwy, = —tany r/2R, wjw,= 1+cotyz/R in OAC. (5-23)
Now asin (b) above, the required additional boundary conditions on the velocity field in

region CAB are that the velocity components # and w should be continuous across C4. Thus
at a general point ) on C4, distant p, from C (see figure 10) it follows, from (5-23), that

u(pq)[wy = —gsiny po[R,  w(pg)[wy = cosy po/R. (5-24)

The form of the velocity equations (5-16) and the boundary conditions (5-22, 24) suggests
the assumption that the velocity components «, w at a general point P(p, ¥) of the region
CAB are of the form,

ufwy = pU(x)/R, wlwy = pW(x)/R,
where . (W <x<—y=lr+lg). (525)
p = {2+ (z+Rtan )2}, tanx:;(z+Rtan¢),

The substitution of (5-25) into (5-8) shows that U and W satisfy

. dU dw .
Usmx+€icosx+ WCOSX—C]_X siny = 0,

' Y <x<-¢). (526)
U(cos x+secy) ~%%sinx+tan2¢(Wsinx—i— %%/cosx) =0,

The boundary conditions on U and W are
U=—%siny and W=cosy on y=¢, and U=W =0 on y =—¢. (527)

The analysis is now facilitated through the substitutions

U=tanycosyF({), W =cotysinyG({),
{=tanycoty, (—1<{<1). } (5:28)
From (5-26,28), it is found that F and G satisfy
W dC (-1<{<). (5-29)
2P~ +G+gr =0,
The boundary conditions on F and G are
Fl)=-%, G1)=1, F(—-1)=0, G(—1)=0. (5-30)

The elimination of F from (5:29) shows that G satisfies

-o Sa+e-m o (5-31)
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PLASTIC DEFORMATIONS IN SOILS 31
It is now straightforward to show that the required solution is

F= —%{arccos(—{)—l—{(l‘—gz)%}a\
(—1<{<), (5:32)

G = %{arc cos (— &)+ (1—)¥/L},

where the inverse cosine lies in the range (0, 7). The velocity components are now seen to
be given by

/

4 _ L cos x{—wtan -+ tany cot f(tan?y —tanty)H,

p/R  2m
wiwy _ Ly x{w coty—coty cot Y (tan®y —tan?y)*}, (5:33)
pIR
where cosw = —tanycoty (0<o<m),
wip
ulp "
wyl R

L Il | 1 | [ I J— |

| |
-20 0 20 40 60 -60 -40 20 0 20 40 60

! !
-60 -40

Ficure 11 X (deg) F1Gure 12
Ficure 11. Variation of wio / —1% with x (|x| < i7m+4¢) for ¢ = 0°, 20°, 40°.

F1Gurke 12. Variation of 1—0@/1—% with x (|x| < 37 +31¢) for ¢ = 0°, 20°, 40°.
0

(cf. Haythornthwaite 1960). Finally, it must be shown that (5-33) satisfy the conditions
(4-3-18). These conditions, remembering (4-3-1, 5-6), are that
du  Jw
or "oz
First, the condition # > 0 requires that F < 0, which condition is easily shown to be true.
Secondly, the other condition requires with use of (5-8) that

du
% = 0, (5-35)

> —cotzwgg 0. (5-34)
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32 A. D. COX, G. EASON AND H. G. HOPKINS

i.e. d(pF cosy)/dr < 0, and this is easily proved to be true. It may be noted that there is
no singularity in the velocity field (5-33) at C. The functions #/p and w/p are exhibited
graphically in figures 11 and 12, respectively. The resulting deformation of a square grid
when the above velocity field is maintained for a short period of time is shown in figure 13
for ¢ = 0°, 20°, 40°.
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Frcure 13. Circular cylindrical sample of soil stressed to yield-point in compression. Resulting
deformation of a square grid if velocity field of figure 10 is maintained for a short period of time.
(i) ¢ = 0° (cf. Shield 19555, figure 7). (ii) ¢ = 20° (iii) ¢ = 40°

6. INCIPIENT PLASTIC FLOW IN A SEMI-INFINITE REGION OF SOIL DUE TO LOAD APPLIED
THROUGH A FLAT-ENDED, SMOOTH, RIGID, CIRCULAR CYLINDER
Let cylindrical polar co-ordinates 7, #, z be defined, the origin being at the centre of the
flat end of the cylinder, the radius of which is R (see figure 14). The soil occupies the semi-
infinite region z > 0. '
The cylinder is taken to be perfectly rigid, with a smooth flat-ended base, and is assumed
to be loaded normally. Here, attention is restricted to the case where all effects due to soil
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PLASTIC DEFORMATIONS IN SOILS 33

weight are neglected, and the accuracy of the results based upon this approximation
decreases of course as the parameter pgR/c increases. However, the inclusion of effects
due to soil weight is straightforward, as has been found by one of the present writers
(unpublished work by A.D. C.). Generally it should be noted that in any situation likely
to involve extensive regions of soil undergoing plastic deformation, effects due to soil weight
are likely to be important and should therefore be included in the analysis.

It is necessary here to take due account of the normal stress corresponding to atmo-
spheric pressure exerted on the surface of natural soil. However, it will be seen later that
this situation is equivalent to the simpler one involving a stress-free surface provided
that the value of the cohesion of the soil is now suitably augmented by an amount depending
upon the value of the atmospheric pressure.

axis of symr‘netr:y'.

Ficure 14. Co-ordinate system.

In mathematical terms the above statement of the problem leads to boundary conditions
on the stress and velocity components. First, since the punch is smooth and is rigid with

a flat end, S
e } on 0<r<R (6:1)

and w = w, = const.,
Secondly, since the soil is bounded by a plane surface acted on only by atmospheric pressure,
7,, = 0 and 0, = —p, onr > R, where p, is the atmospheric pressure. Now, as is easily veri-
fied, the equations of equilibrium and also the yield criterion are unaltered by the addition
of a (constant) hydrostatic pressure —p, to the actual stress field provided that at the same
time a relative cohesion ¢* = ¢+p, tan ¢ is used in place of the ¢#rue cohesion ¢. Bearing this
in mind, the conditions on the surface may thus be taken as

7,,=0,=0 on 7r>R. (6-2)

In order to see the possible difference due to the use of ¢* in place of ¢, it may be noted that
most soils have values of ¢ (Lb./in.?) and ¢ (deg) in the ranges 0 < ¢ < 20 and 0 < ¢ < 40,
whereas p, is approximately 15 Lb./in.2. Thus it is possible for the two terms in ¢* to be of
comparable magnitude, and for sands, when ¢ is very small and ¢ is about 40°, the second
term p, tan ¢ will be dominant. It should be noted that it is normal in soil mechanics to
deal with excess stresses above atmospheric and therefore quoted values of the cohesion

Vor. 254. A,

(%}
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34 A. D. COX, G. EASON AND H. G. HOPKINS

of a soil will generally refer to ¢*, but care must be taken in any application of the present
theory to ascertain that this is the case.

The boundary conditions together with the governing equations (which will be discussed
later) suitably define the problem, and it is appropriate at this place to consider the unique-
ness of the solution that will be obtained. It should be noted that the velocity boundary
conditions are not sufficient completely to determine the velocity field anywhere in the
ideal soil. This means that although by arbitrarily imposing further conditions on the
solution an acceptable velocity field can be found, it is not to be expected that this solution
is unique.

The uniqueness of the corresponding two-dimensional problem, with ¢ = 0, was dis-
cussed by Bishop (1953) and the following arguments are based upon his work. The solution
is obtained in three distinct stages. First, once suitable additional boundary conditions
have been specified, the velocity components z and w are found throughout the soil, being
non-zero only in a certain region near the cylinder and zero elsewhere. Secondly, the stress
components are calculated throughout this region. Since the region of plastic deformation
must include the whole area of soil in contact with the cylinder, it is clear that the stress
components in this region are sufficient to determine the stresses on the cylinder. The
solution so far obtained is incomplete, and limit analysis only shows that the yield-point loads
so obtained are upper bounds to the correct values. Thirdly, the stress field is, if possible,
extended into the entire rigid region in such a way as to satisfy the conditions of equi-
librium and yield. Provided that this can be done in a satisfactory manner, the solution is
complete and limit analysis shows that the yield-point loads obtained previously are also lower
bounds to, and hence are identical with, the correct values. Further, a theorem due to Hill
(see Bishop 1953) shows that the stress field in the deforming region is unique. However,
no conclusions can be drawn as to the uniqueness of the rest of the stress field or of any part
of the velocity field. It should be noted that these defects in the nature of the solution are
inherent in the method of approach and are in no way a peculiarity of the present problem.

It is necessary to follow an heuristic method when solving the present problem, namely,
the relevant régimes are assumed a priori, and justified a posteriori when a solution is found.
The discussion given in § 4 of the consequences of assuming any particular plastic régime
suggests that F'is appropriate for the present type of problem; this is one of the two Haar &
von Kdrmdn régimes which have the property that the intermediate principal stress is
equal to one of the other two principal stresses. For this reason it will now be assumed that
the equations governing plastic régime F apply. The fact that this plastic régime is statically
determinate leads to an inversion of the procedure outlined above, and in any region the
stress field is determined before the velocity field, but this does not affect either the argument
above or its conclusions.

_ . ) (a) Incomplete stress field
(1) Goverming equations

The governing equations for plastic régime F are, as shown in § 4-3, hyperbolic, and from

equations (4-3-9, 10) the characteristics are given by

dz "tangﬁ on an « line,} (6:3)

dr  ltan (f+3n+¢) on a p line.
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PLASTIC DEFORMATIONS IN SOILS 35
The relations along these characteristics, with neglect of soil weight and use of the sub-
stitution t1n (Q)c%) if 0
>0,
A [cotgIn Je 1 ¢ (6-4)
Pfc* if ¢=0,
are, from (4-3-11),
dA+2dy = — r-l-{cos (Y+9) +siny} dséx on an « line,
1 (6:5)
dA—2dy = r—{cos (¥ +¢) +siny}ds, on a f line.
In terms of the variables A and ¢, the boundary conditions (6-1,2) are
v = 3n—1g, on O<7<R,1
V= im—%4, (z=0). (6-6)

} on r>R, J
A = cotg Incot (37 —14)

T/ e SooM ’

Ficure 15. Schematic diagram of characteristics net.

Following Shield (19554), the characteristics net is expected to exhibit the geometrical
features depicted schematically in figure 15. In this figure the lines such as MN, AC and
KL are « lines and those such as MQR are ff lines. In the determination of the stress dis-
tribution over the base of the circular cylinder, it is only necessary to consider that part of
the field bounded by 04, AB and BCDO, where ODCB is the £ line through O. Now since,
from (6-6), both A and ¥ are known on the line 4B (itself not a characteristic), equations
(6:5) determine their values in ABC, this being a second boundary-value problem in Hill’s
(1950) nomenclature for the case of plane strain. The values of A and ¥ on AC, together
with the fact that at 4 there is a singularity in the field (since, for example, ¢ is discontinuous
at A on OAB), determine the field in the fan ACD, the angle CAD being 47 independently
of the angle of friction, ¢; this is a first boundary-value problem (cf. Hill 1950). Finally, the
now known values of A and ¢ on AD together with the value, given by (6-6), of ¥ on 04,
determine A and ¢ in ADO, a third boundary-value or mixed problem (cf. Hill 1950).

(ii) Numerical solution

The numerical procedure is based upon the approximation of the equations (6:5) by
finite-difference equations. These finite-difference equations are used, as described below,
to determine A and ¢ at the (initially unknown) point of intersection of an « line and a

5-2
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36 A. D. COX, G. EASON AND H. G. HOPKINS

B line through two neighbouring points not lying on the same characteristic. Repeated
applications of this process determines the entire stress field.

Referring to figure 16, suppose that A and  are known at P and Q. Itis required to find
the point of intersection, R, of the « and £ lines through P and @, respectively, together with
the values of A and ¢ at R. For simplicity, suffixes P, @ and R are used to denote values of
the variables at the points P, ¢ and R, respectively.

Ry(ry,2,)

r
Ficure 16. Intersection of characteristics through two neighbouring points P and @ of the
mesh, showing the first approximation R; to the true point of intersection R.

A first approximation to the position of R is taken to be R,(r,z,), the point of inter-
section of the tangents to the « and /£ lines through P and @ respectively. Equations (6-3)
show that r, and z, are given by

zy—zp = (r,—71p) tan yp, }

zy—zy = (rg—r,) tan (%ﬂ—gﬁ——g/fQ).

First approximations A, and ¥, to the values of A, and ¥, are then determined from
(A —Ap) +2(¥, —¥p) = —2(ry+1p) " H{(ry—1p) cOs g+ (2, —2,) (1 —sin )},
(A=A —2(¥1— Vo) = 2(r +19) " {(rg—r1) cos g+ (2, —2¢) (1 —sing)}.

Second approximations (here taken as final ones) to r, and z, are then found from

zp—2zp = (rp—7p) tan {F(¥p+¥1)}, |
zg—1q = (Tq—7g) tan {%77*?5—%(%*!—?/’1)}-}

Second approximations (here taken as final ones) to A, and ¢, are determined from

equations (6-8) with 7, and z in place of r; and z,.

Since the extent of the field, and in particular the position of B (see figure 15), is not

known a priori, it is more convenient to make calculations along the entire length of a
line, starting from the first one around 4, before proceeding to the next one. The first §

(6:7)

| s

(6-9)
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PLASTIC DEFORMATIONS IN SOILS 37

line about 4 depends upon conditions at the singular point 4, and special consideration,
given later, is required. Suppose, therefore, that the position of the fline JK (see figure 15)
and the associated values of A and y are known. Successive application of the above scheme,
starting from M, leads to the determination of the position of M@ and also the associated
values of A and ¢, but R cannot be determined in this way. This is because the point P,
lying on the same « line as R, which would be needed for this determination, lies outside the
stress field and is therefore unknown. This apparent lack of data is offset by the fact that
z and ¢ are already known, i.e. z = 0 and ¢ = 37— 1¢ at R. These extra data are sufficient
to determine r and A at R, using only the relations (6-3, 5) that pertain to variations along
f lines. However, it is more convenient, so far as computation is concerned, to define
suitable values at a virtual point P in such a way that, when the above scheme is applied,
the conditions on z and ¥ at R are automatically satisfied while the values of r and A at R
are determined. This artifice, discussed by Hill (1950) for the case of plane strain, essentially
involves a reflexion of the actual stress field in the plane z = 0. In the present problem the
appropriate values of the variables at P are

p==To Zp= —2Zp, Vp= %7’_¢_¢Q3 Ap = AQ) (6:10)
and it is easily seen that the iterative procedure described above automatically leads to
zp =0, ¥p = $m—3}¢ and at the same time determines 7, and A.

TABLE 2. NUMERICAL DATA FOR PROBLEM OF INDENTATION OF
A PLANE SURFACE BY A CIRCULAR CYLINDER

¢ (deg) bslc* b3olc* palc* 0B/04

0 5-69 71 5-14 1-58

5 7-44 9-7 6-49 171
10 9-98 14 8-34 1-88
15 139 22 11-0 2-09
20 20-1 34 14-8 237
25 305 59 20-7 273
30 49-3 110 301 3-21
35 85-8 210 46-1 3-89
40 164 430 753 4-86

As discussed above, 4 is a singular point and ¢ is multi-valued there. Thus, there is a
fan of « lines centred at 4. It is convenient to regard the point 4 as a degenerate f line.
Hence 4 may be regarded as a single infinity of points 4,, all having the same co-ordinates
r; = R, z, = 0 but with distinct values of ¥ and A. Further, since a limiting form, with
ds; = 0, of the characteristic relation along a f line (6-5) must hold at 4, it follows that if
atd, ¥ = tr—3%¢p+w (0 <w < $7), then A = coté Incot (37— 3¢) + 2v.

In the detailed calculations the following mesh of characteristics was used. In ABC equally
spaced points were taken along 4B, and the « and £ lines through these points defined the
mesh. In ACD the f lines were determined as the continuation of those in ABC; the « lines
were chosen by requiring that in passing around the singular point 4 there were constant
increments in the angle » defined above. In AOD the f lines were again the continuation
of those in ACD, while the « lines were taken as those through the points of intersection of
the already known £ lines and O4.

Table 2 gives values, calculated on the A.R.D.E. digital computer AMOS, for the mean
yield-point pressure p;, the maximum pressure on the cylinder p; , (which occurs at the
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38 A. D. COX, G. EASON AND H. G. HOPKINS

origin), and also the ratio OB/0A, all as functions of the angle of internal friction ¢ for
¢ = 0°(5°) 40°. Values of all these quantities were computed for successively smaller mesh
sizes, and the final values given in table 2 are believed to be accurate to the number of figures

221 2.9}
2-0t— 20
1-8f 1-8
% 16 % 16
= =
< S
s 4 s 14
g g
1.2,,. 12 -
10 1-01—
08 08l
0 10 20 30 40 08 1-0 12 14 16 18

¢ (deg)

Frcure 17. Variation of mean yield-point
pressure with angle of internal friction.

log,y (pa/c*)

Freure 20. Corresponding axially symmetric
and plane strain values of mean yield-point

pressure.

28—

24 -

€ 20 20

» =

% 1'6“" ;g/ -

& S

< oD

08 R N AN B NN SO B
0 0 10 20 30 40

¢ (deg)

Frcure 18. Variation of maximum pressure
exerted on the soil with angle of internal
friction.

Ficure 19. Variation of OB/0OA with
angle of internal friction.

given. For purposes of comparison, table 2 also shows values of the constant yield-point
pressure p, for the problem of indentation by a die under plane strain conditions (see
Prandtl 1920). Infigures 17, 18 and 19 the quantities ps, p3 , and OB/04 are plotted against
¢, and in figure 20 the quantity p, is plotted against p,. Figure 20 shows that, as a simple
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PLASTIC DEFORMATIONS IN SOILS 39

approximation, log,;,f,; may be taken as a linear function of log,,p, over the range of ¢
considered.

Figure 21 shows the calculated net of characteristics, and figure 22 the pressure dis-
tribution on the face of the cylinder, for the particular case when ¢ = 20°. For the other
values of ¢ considered here, the characteristics nets exhibit the same geometrical features
as for ¢ = 20°, the major difference being one of scale. This difference in scale is exemplified
by the ratio OB/0A which, as shown in figure 19, increases markedly with ¢.

z

o___ 14 B

Ficure 21. Actual characteristics net for ¢ = 20°,

IS S N A N R
0 02 0-4 06 08 10
7/R

7

Ficure 22. Pressure distribution exerted on the soil by the cylinder for ¢ = 20°.
(i) Governing equations (b) Associated velocity field

The equations governing the velocity field are hyperbolic, with the same characteristics
as those of the stress equations (see § 4-3). The relations governing the variation of « and w
along the characteristics are given by (4-3-16). Here it is convenient to write these relations
in terms of the velocity resolutes U and W defined by

U=ucosy+wsiny,
W — —usin (§+¢) +w cos (¢ +9),
or, equivalently, ucosp = Ucos (Y +¢) — Wsiny,
wcos¢ = Usin (Y +¢) + Wcos .

(6-11)


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

40 A. D. COX, G. EASON AND H. G. HOPKINS
In terms of U and W the characteristic relations become

dU~sec¢(W+Usm¢)d¢~—-—S—129{U cos (Y +¢) — Wsingﬁ}% on an « line,

(6-12)

dW-t-sec g(U-+ Win ) dy — *ﬂﬂn_ﬁé{U cos (¥ + ¢) — Wsin ¢} on a f line.

The only velocity boundary condition explicitly specified is that w = w, on 04 or, in terms
of U and W, remembering (6-6),

U—W =2wycos (37—%¢) on 0<r<R, z=0. ' (6:13)

Since this condition by itself'is not sufficient to determine the values of U and W, it is neces-
sary, as already mentioned, to assume some further condition. The solution is expected
to involve a region of active deformation and a rigid region. Since this must lead to some
discontinuities in the velocity components or their spatial derivatives, it follows that in the
simplest case the boundary between these two regions must be a characteristic line. It is
clear from the geometrical form of the net of characteristics shown in figure 15 that this
boundary must be a f line rather than an « line. Further, since the velocity field must accom-
modate the incipient motion of the cylinder, 04 must lie within the region of active defor-
mation. Thus the simplest configuration that can occur is when the fline O.DCB is the boun-
dary between the actively deforming region and the rigid region, and attention will now
be confined to this case.

Now the region beyond ODCB is rigid, and it can be shown, in a manner similar to that
followed in § 5 (6) (but now with additional use of (4-3-11)), that

U=W=0 on ODCB. (6-14)

The determination of the velocity field is straightforward and is uniformly of the same
type (i.e. type (iii) discussed by Hill 1950). The method, which applies throughout the three
regions OAD, ACD and ABC, is as follows. Let the /§ lines be taken in order, with ODCB as
the first and the point 4 as the last. Then the specification of U and W on ODCB, together
with the relation (6-13) which holds where the second £ line meets 04, determines U and
W along the entire length of this £ line. Repeated application of this method, using the
newly determined £ line in place of ODCB, determines the whole of the field.

It remains to check that the two inequalities (4-3-18) are satisfied. Substituting for u
and w in terms of U and W, these conditions reduce to

Ucos (Y +¢)—Wsiny >

ou . oW dy oW z/r
5;+s1n¢as“ Wco ¢0 —}—a +-s1 ¢0 +Ucos¢

3
1—sing cosq5

(6°15)

\\/

—

= ising {U cos (1/f+¢)~Wsin¢}.

(i1) Numerical solution

Exactly as for the stress equations, the characteristic relations (6-12) are approximated
by finite-difference relations which are then used to determine U and W at R (see figure 16),
given their values at P and . There is one major difference between the determination of


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PLASTIC DEFORMATIONS IN SOILS 41

the velocity field and that of the stress field since the co-ordinates, and hence values of ¥,
are already known at all three points P, @ and R. Thissituation is, of course, a direct reflexion
of the fact that plastic régime F is statically determinate.

First approximations U; and W to the values of U, and W, are determined from

(Ui—Up) cosg = (¥ — ) Wy-+ Upsin )
LIy 1y) cO8 o (Wt Upsing) (2~ 2},
(=10, cos = — (Y —tho) (Up-Wiysin) - (19
_ 17_;‘;;%? (W (ra— 1) €08 § -+ (Up-+ Wysin g (24 — o) }-

Second approximations (here taken as final ones) to U, and W, are then found from (6-16)
with 3(U, 4 U,) replacing U, (W, +W,;) replacing W, and so on, on the right-hand sides of
these equations. Last, it must be verified that Uy and W, satisfy the conditions (6-15) (here
taken, of course, in finite-difference form) in order to complete the necessary checks on the
validity of the solution.

Ficure 23. Resulting deformation of a square grid if the incipient velocity
field is maintained for a short period of time for ¢ = 20°.

The calculations outlined above were made on a desk calculating machine for the case
¢ = 20°. For convenience, it is assumed that the solution near the origin is described to
sufficient accuracy by that derived analytically in § 5 (5) as one mode for the incipient plastic
deformation of a circular cylinder under uni-axial compression. The resulting velocity field,
as reflected by the form of the incipient deformation undergone by a square grid, is depicted
in figure 23. The conditions (6-15), checked at about one-in-ten of the mesh points, were
found to be satisfied.

The velocity field has only been constructed for ¢ = 20° (and, by Shield 19555, for ¢ = 0).
However, there is no reason a priori to suppose that it cannot be similarly constructed for all
the values of ¢ of interest here. Assuming this to be true, the theorems of limit analysis then
show that the values of the yield-point pressures p, obtained in § 6 (¢) are upper bounds to

the correct values.
(¢) Complete stress field

The stress and velocity fields obtained in §§ 6 (a), (b) are, in Bishop’s (1953) terminology,
an incomplete solution, leading only to the conclusion that the yield-point loads obtained
are upper bounds to the correct values. It is now necessary to prove that they are also lower

6 Vor. 254. A.
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bounds and hence are the correct values. Thus it must be shown that the stress field can be
extended throughout the entire rigid region, without violating the conditions of equi-
librium and yield. Only in this way is a complete solution derived.

The method used by Shield (19555) for the case ¢ = 0, involving the construction of a
stress-free surface originating at the point B, is based upon that used by Bishop (1953) in
the proof of two theorems which state whether or not such an extension is possible. How-
ever, in any particular case, if it is assumed that the required extension is possible in
principle, then simpler fields can be constructed. In the present problem, the fact that an
extension is possible for ¢ = 0 suggests that the sameis true for at least somerange of positive
values of ¢; this conjecture is established directly through the construction of an acceptable
extension.

Z
G
F
D
C
O——1 B "

Ficure 24. Extension of the stress field near the cylinder into the rigid region for ¢ = 20°.

The method to be adopted follows that proposed by Bishop (1953) as one possible way of
determining an acceptable extension of the stress field in the problem of the two-dimensional
punch. Briefly, this method is as follows. Initially it is assumed the entire region exterior
to ODCB is plastic, and the stress field is calculated in as much of this region as is necessary
for the purposes of the following discussion. A curve BFG (see figure 24) is constructed in
this region, starting at the known point B and ending at an initially unknown point G on
the z axis, which is then regarded as a line of stress discontinuity. Across such a line of dis-
continuity, conditions of equilibrium require only that the normal and shear stresses be
continuous, and therefore a certain amount of freedom still remains in the stress con-
ditions exterior to BFG. The curve BFG is, in fact, so chosen that of these possible stress
configurations one can be extended into the rest of the region in a simple way, described
below, without violating the conditions of equilibrium and yield.

In more detail, the procedure is as follows. Both A and ¥ are known on ODCB from the
incomplete stress field derived in §6 (¢). In addition, since the z axis is an axis of sym-
metry, which implies 7,, = 0 there, = $7— 14 onr = 0. Thus, assuming that the behaviour


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PLASTIC DEFORMATIONS IN SOILS 43

of the medium is in accord with plastic régime F, sufficient boundary conditions are
available to determine A and ¢ in the region bounded by ODCB, the « line through B and
the z axis. Ifit were necessary to calculate more of the field, the boundary conditions (6-6)
are available on the r axis external to OB.

The numerical determination of this field, which is a third boundary-value problem (cf. Hill
1950), follows previous lines. The only difference now is that successive f lines are calculated
clockwise from the z axis instead of counter-clockwise from the r axis.

Once this field is known the curve BFG is constructed as follows. Itis convenient for the
purposes of description to assume that the part BF of this curve has been calculated. The
actual determination of BF is discussed later, but it may be noted that § = }m—3¢ at F.
The curve FG is then taken as the principal stress trajectory through F with initial direction
parallel to the z axis. Bearing in mind the conditions that hold along a principal stress
trajectory, it is easily seen that an acceptable stress configuration in the immediate exterior
of FG is such that at any point there is only one non-zero component, say ¢, when referred
to local Cartesian co-ordinates 7, s respectively normal and parallel to FG. This stress
configuration is then continued into the whole of the region lying above a line through F
parallel to the r axis as follows. Let the curve /G be divided into a series of consecutive small
elements. On any such element the force transmitted at each point is approximately con-
stant and parallel to the normal to the element. This force can thus be held in equilibrium
by a column, of constant cross-section, equal to that of the element, normal to the element
and under a constant uni-axial stress equal to ¢,. Provided first that this stress o,,, in absolute
value, is less than or equal to the uni-axial yield stress 2¢ tan (17 + 4¢) and secondly that the
curve FG is everywhere concave to the punch, so that the columns do not intersect, the stress
system comprising these stressed columns together with unstressed material between them
gives, as a first approximation, an acceptable continuation of the stress field above a line
through F parallel to the r axis. In the limit as the size of the elements tends to zero an
acceptable stress field results.

The reason for considering the portion BF of the curve BFG separately is now apparent.
In the region bounded by the r axis and the « line AC (see figure 24) the £ lines are convex
to the punch, so that any principal stress trajectory, which intersects the £ lines at a constant
angle, must also be convex. However, this difficulty is overcome by an extension of the
above ideas, as follows. The curve BF, whose tangent at any point makes an angle » with the
r axis, is constructed in such a way that an acceptable stress field outside BF is one in which
the only non-zero stress component is ¢,. The two equilibrium equations are sufficient to
determine w and ¢,, and provided o,, in absolute value, is less than or equal to 2¢ tan ({7 3¢)
the stress field can again be extended using compression columns which are now, however,
normal to the z axis. The curve BF is continued until, at the point F, w again becomes
equal to 7. In order that the principal stress trajectory F'G may satisfy the requirements
of the problem, F must lie above the « line AC. In the case considered below, this
was so, but if it were not so the curve BF could be continued until this requirement was
met.

The extension of the stress field discussed above has been calculated for ¢ = 20°, and the
resulting line of stress discontinuity BFG is shown in figure 24, together with the charac-

teristic net; in the numerical work more characteristics were used than are shown in the
6-2
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figure. The stresses transmitted across this discontinuity were found to satisfy the conditions
stated above.

In view of the fact that the required extension of the stress field has been shown to be
possible for ¢ = 20°, and, by Shield (195554), for ¢ = 0, it seems unlikely, since there are no
new physical complications, that a complete solution cannot be found quite generally for
0° < ¢ < 40°. Itis concluded that the yield-point loads obtained in § 6 (a) are also lower
bounds and hence are equal to the correct values. In addition, it can be concluded that the
stress fields that obtain in O4ABCD, found from the method discussed in § 6 (a), are the
correct ones.

7. CONCLUDING REMARKS

The present study of axially symmetric plastic deformations in ideal soils (with ductile
metals, too, being included as a special case) has shown that real families of characteristics
of the stress and velocity equations occur in all non-trivial cases. Now inasmuch as the
solution of plasticity problems must involve attention, more often than not, to stress and
velocity fields obtaining throughout regions with initially unknown boundaries, this striking
situation makes for much simplicity in the mathematical and associated computational
investigations. In particular, attention has been focused on the Haar & von Kérman type
of plastic régimes as being, seemingly, of very fundamental significance in relation to the
solution of certain classes of problems of interest. For these particular plastic régimes, the
stress and velocity fields are hyperbolic with coincident families of characteristics, and the
stress field is statically determinate under appropriate boundary conditions. In the present
investigation, attention has been directed primarily towards the study of the Haar & von
Karman plastic régimes and their application to certain problems which not only serve as
useful illustrations for the general mathematical theory but are also of physical interest in
relation to soil mechanical testing and foundation engineering. In the problem of the
indentation of a plane surface by a circular cylinder, it has been found that the yield-point
loads increase markedly with the angle of internal friction. Although the details of the
solution of the problem vary with this angle, the basic features remain unaltered. This fact
suggests that the somewhat tedious construction of complete solutions (as distinct from
incomplete ones) may well be omitted in proceeding to solve problems of a similar type.
However, if such a procedure is followed, then careful judgement is obviously necessary.
The present applications of the theoretical analysis considered in this paper are of course
simpler than the analogous one involving effects due to soil weight or ones that involve
finite displacements at the free surface.

Note added in proof (8 June 1961). The attention of the reader is drawn to Gvozdev’s
(1938, 1960) early work on the theorems of limit analysis and to Hill’s (1961) recent
work on the discontinuity relations in the mechanics of solids.

The authors wish to thank the referees for their suggestion that the detailed analysis of
the field equations for the various plastic régimes could be condensed without loss in the
present context.

Acknowledgment is made to the Controller of H.M. Stationery Office for permisssion to
to publish this paper.
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